

INTERNATIONAL JOURNAL OF RECENT TECHNOLOGY SCIENCE & MANAGEMENT

"ADVANCED BLOCKCHAIN MECHANISMS FOR STRENGTHENING DATA SECURITY AND ENSURING PRIVACY IN DECENTRALIZED SYSTEMS"

Godavari Modalavalasa 1

¹ Independent Researcher <u>godavarimdv23@gmail.com</u>

ABSTRACT

The reorganized blockchain network achieves tamper-proof security by protecting data using its advanced data protection framework that enables secure transactions and information exchange. Both distributed consensus deployment and Data transparency are ensured by cryptographic hashing and blockchain-based smart contracts. and prevent unauthorized changes along with full system and data integrity. This study examines how blockchain security supports IoT network protection and safeguards cloud-based sensitive data, and functions as a trusted foundation for electronic voting. A comprehensive investigation reveals how blockchain prevents cyber threats while simultaneously stopping double-spending incidents and improving identity management systems by utilizing the principles of CIA (Confidentiality, Integrity, and Availability). The research analysis describes the manner by which blockchain ensures safe e-transactions across healthcare, finance and supply chain sectors while reducing fraudulent activities and improving monitoring capabilities. Ongoing research and optimization methods have become essential for blockchain adoption because it deals with scaling and computation expenses and integration problems with present systems. This paper delivers a comprehensive exploration of present-day blockchain security protocols with an effectiveness assessment as well as forthcoming answers to address current system constraints that produce dependable and privacy-protected infrastructure deployments throughout different sectors.

Key Words: Blockchain Security, Decentralized systems, consensus mechanism, key management, Digital transactions.

I. INTRODUCTION

Blockchain technology operates as an advanced system that provides higher security alongside protected privacy features in distributed networks. Blockchain technology presents ideal solutions for data protection through its built-in features, including unalterable data, distributed management and encryption that address escalating privacy threats in global network systems [1]. Under the increasing adoption of blockchain to defend operations and protect assets and communications by organizations and industries the improvement and authentication of security systems becomes essential. This paper investigates modern blockchain protection methods while detailing blockchain capabilities that defend sensitive information in distributed systems.

Blockchain technology serves applications that go beyond cryptocurrencies since it supports various security-related implementations. IoT devices benefit from software authenticity checks, while transmission security protects data. The mechanisms deliver records that secure together with complete transparency and proof against tampering to protect against cyberattacks data breaches and fraudulent activities. Traditionally, secure protocols their insufficient to protect the continuously escalating digital transactions and sensitive exchanged data. Durable system capabilities of distributed ledger technologies based on blockchain technology exist because they securely protect data privacy alongside strong system integrity and distributed data accessibility.

Several obstacles make it difficult to implement blockchain into data security and privacy systems despite its possible www.ijrtsm.com© International Journal of Recent Technology Science & Management

advantages. Blockchain technology requires solutions for its scaling issues and energy usage problems, as well as existing network interconnection barriers, to fulfill its potential for protecting decentralized systems [2]. Due to continuously changing cyber threats, the security methods based on blockchain need to keep developing mechanisms in order to protect privacy effectively. I assess the present usage of blockchain data security[3], analyze its protective features, and identify key development trends.

A. Motivation and Contribution of the Study

A rise in digital system usage along with fast-growing data amounts has made security issues, privacy threats, and data reliability problems acute in decentralized structures. Conventional security solutions their inadequate for blocking data breaches together with unauthorized access events and cyberattacks, so organizations must seek advanced protection methods. The decentralized and cryptographic system that forms the foundation of blockchain technology enables teams to solve current security and other challenges. Blockchain innovations that include cryptographic security, smart contracts, zero-knowledge systems, and consensus protocols can help organizations improve data security and eliminate the need for middlemen. This research marks a response to the immediate requirement for evaluating sophisticated blockchain mechanisms because they aim to secure decentralized systems through open and privacy-protecting transactions across different business sectors. The study includes the following essential contributions:

- The research examines blockchain development by analyzing its cryptographic elements together with consensus system features, which guarantee safe data maintenance.
- The paper demonstrates how blockchain protects IoT communication while ensuring software download authenticity to minimize security threats.
- Electronic voting systems that guarantee secure transparency and auditing capabilities stem from blockchain applications, according to the paper.
- The article explains how blockchain preserves privacy by using pseudonymous transactions and zero-knowledge proofs technology.
- The research discusses how blockchain defends against tampering DDoS attacks, and double-spending to ensure transaction security.

B. Structure of the paper

Researchers can see how blockchain technology improves data security and privacy features. The paper's structure begins with an introduction of blockchain mechanisms in Section II followed by its application for IoT security and software validation and data protection in Section III while Section IV explains blockchain's role in network security, and Section V outlines electronic voting through decentralized applications afterward Section VI discusses security and privacy in decentralized systems and the related research is examined in Section VII.

II. BLOCKCHAIN MECHANISM FOR ENHANCING DATA SECURITY AND PRIVACY

Blockchain technology provides state-of-the-art data management solutions that ensure unmatched security, complete transparency, and improved operational effectiveness. Blockchain's decentralized architecture uses consensus processes to confirm the legitimacy of data, reducing the need for middlemen [4]. Blockchain records their necessary for insect-based contracts because they prevent information tampering in sectors like construction that demand complete data dependability [5]. Businesses may improve privacy control by using cryptographic keys, which provide consumers the ability to manage access rights [6].

A. Blockchain Architecture

Every blockchain block integrates its header material along with body materials facing each other. The header features two elements which include a hash value coupled with a mention of the preceding block hash that produces an impregnable chain. All network nodes possess access to the shared ledger where transactions their recorded. Blockchain validation uses consensus techniques that include PoS, PoW, and PoET. Each link in the blockchain configuration remains secure due to the need to break all hash values from beginning to end [7].

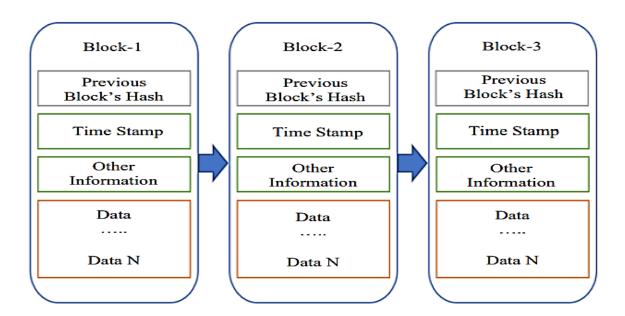


Fig. 1. Blockchain structure

The core data, has each block frequently contains the time stamp, supplementary data, the current block's hash as well as the previous block's hash. The BC's organizational structure is shown in Figure 1.

Primary Data

This might be an IoT recording, a bank clearing record, or a record of contracts or transactions, based on the services this blockchain application offers.

Hash

A code that has been hashed from the finished transaction is transmitted to each node. The final hash values, which contained Merkle tree roots, were generated by the blockchains using the Merkle tree technique. This was done because there might be hundreds of transaction records in each node's block. The standard hash values would be included in the block header. The resources needed for data transfers and computation might be greatly decreased by applying the Merkle tree function.

Timestamp

The exact date and time that a block is first created within the blockchain is known as the timestamp. This ensures data integrity, chronological order, and the ability to accurately trace transactional activities.

Additional Information

Take into account the values of the Nonce, the block's signature or any other details the user provides[11].

A typical blockchain (BC) system has six main levels, as illustrated in Figure 2. The layers of data, reward, network, agreement, contract, and application. Transactions and blocks their stored in the data layers, which connect them in a sequential manner. Block metadata includes the block version, previous and current hash, timestamp, and Merkle root. The network layer broadcasts verifies, and audits data using a peer-to-peer model [8]. The consensus layer determines the algorithm for agreement among decentralized nodes, utilizing protocols like the blockchain system determines the differences between PoW, PoS, and PoET.

Application Layer

Internet of Things, Internet of Medical Things, Smart City, Market
Security

Contract Layer

Algorithm, Smart Contract, Script Code

Incentive Layer

Issuance Mechanism, Allocation Mechanism

Consensus Layer

PoW, DAG, PoS, PoE, PoX, BFT, PoL, PoET etc.,

Network Layer

P2P Network, Communication Mechanism, Verification Mechanism

Data Layer

Data Block, Chain Structure, Time Stamp

Fig. 2. Blockchain Architecture

B. Blockchain Uses in Security Applications

The uses of blockchain technology designed for security their highlighted in this section.

1) Security of IoT

As AI and IoT become more widely used, protecting data and systems from hackers has always been a top priority. One possible use of Using blockchain technology to keep things secure of the IOT is encrypting device-to-device connections, using fundamental management techniques, and user authentication[9]. The security of IoT systems might be enhanced by this type of blockchain use [10].

2) Software download authenticity

Through the use of BC technology, software installers and updates might be verified, lowering the possibility that harmful malware will utilize compromised computers. The BC is updated with hashes to confirm the authenticity of the downloads, and new program IDs may be compared to the hashes.

3) Protection during data transmission

Data encryption is one way to provide this protection, preventing unauthorised parties from accessing the data while it is being sent [11].

4) The decentralized storage of essential data

Given the continuous exponential increase in data creation, blockchain-based storage solutions can help achieve decentralised storage while protecting digital data [12].

5) Security of the DNS

The DNS, like the public directory, links IP addresses to domain names. Over time, hackers have attempted to

use these links and the DNS to take down websites. However, the decentralised and immutable nature of BC technology allows for improved security maintenance of the DNS.

C. Blockchain Application in Network Security

The model of the CIA triad confidentiality, integrity, and availability is key to network security, and blockchain helps enforce these principles.

- Confidentiality: Blockchain encrypts data, ensuring only authorized access, even over untrusted networks. Security measures like access controls and cryptographic techniques protect private keys from loss or theft.
- **Integrity:** Blockchain's immutability and traceability secure data integrity. Consensus protocols help prevent cyber control attacks, while smart contracts enforce rules and prevent unauthorized data mining.
- Availability: Blockchain resists DDoS attacks due to its decentralized nature. With no single point of failure, data remains accessible across multiple nodes, ensuring system resilience [13].

III. DECENTRALIZED APPLICATIONS BASED ON BLOCKCHAIN

Numerous decentralized applications, such as decentralized social networks, decentralized trading platforms, and decentralized insurance services, have appeared due to blockchain 3.0 and the development of blockchain technology. The most common use case is EVS (Electronic Voting System). EVS is supposed to be tamper-resistant and verifiable as a distributed audit layer [14][15]. Blockchain technology can prevent agents from manipulating election electronic data while bringing transparency to such services.

A new trustworthy decentralized voting system is presented in order to integrate blockchain technology with electronic voting. Regarding vote secrecy, integrity, and validity verification, a practical, It was explained how to implement a voting system that is safe, verifiable, and independent of platforms on any blockchain that permits smart contract execution, that blockchain technology [16], paired with contemporary encryption can offer the confidentiality, integrity, and transparency needed for trustworthy online voting [17]. An innovative cryptographic method for a secret, authenticated, and end-to-end verifiable ballot election was presented. Crypto-voting is an electronic voting mechanism. This approach is based on a secret sharing technique and necessitates the usage of blockchain technology. A major problem with current voting technologies is their lack of audibility and transparency. It has a fresh answer thanks to blockchain technology. To illustrate e-voting procedures and the elements of a supervised Internet voting system that can be investigated and verified, they proposed an auditable blockchain voting system [18][19]. This method's architecture makes use of voter-verified paper audit trails and blockchain technology. A proxy signature variation known as a "multi-proxy signature" enables a delegator to control the signing privileges of several proxy signers [20]. Based on this, a novel design for an end-to-end verifiable and auditable blockchain-based supervised Internet voting system was considered and further researched. Figure 3 depicts the EVS network based on blockchain.

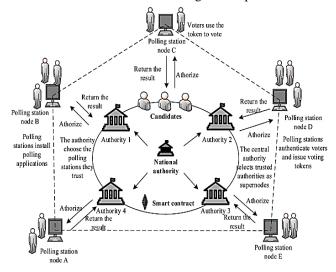


Fig. 3. Blockchain-based EVS Network.

ISSN: 2455-9679

SJIF Impact Factor: 6.008

Decentralized Applications in the Data Security Field

The explosion in data size across all domains is a result of the big data age. The largest issue with big data at the moment is trust, which will make it more difficult to transmit data securely. Blockchain technology presents a novel approach to the issue of privacy and data security [21][22]; it combines traceability and tamper-resistant advantages. Smart contracts in blockchain systems have the ability to automatically carry out default commands to guarantee the secure transport and storage of data resources.

IV. SECURITY AND PRIVACY PROPERTIES OF BLOCKCHAIN IN DECENTRALIZED SYSTEMS

Cryptographic encryption is one of the many security elements that make blockchain technology so reliable. Its immutability and decentralized consensus mechanisms make data tamper-proof and transparent. Blockchain also offers privacy via pseudonymous transactions, zero-knowledge proofs, and selective data disclosure. These properties make blockchain reliable for secure and private digital interactions [23][24], though challenges like scalability and regulatory concerns remain.

A. Security and Privacy Requirements of Online Transactions

The seven categories of information listed below must be considered to make online transactions as secure and private as possible.

1) Consistency of the Ledger Across Institutions.

The instruction manual processes, the calculation of high transaction fees from clients, the architecture and business practices of various financial institutions, and the background operations of these institutions all make reconciliation, clearing, and liquidation procedures more likely to contain errors and inconsistencies between ledgers held by various institutions.

2) Integrity of Transactions.

There are several intermediaries that manage cryptocurrency, Income vouchers, warehouse receipts, stocks, bonds, notes, and other assets for online asset management and investing. Apart from increasing transaction expenses, this also increases the likelihood of intentional certificate fabrication or forgeries. To prevent transaction manipulation, the system must guarantee transaction integrity.

3) Availability of System and Data.

Its users ought to have access to transaction data through online platforms at any time and from any location. In this context, "availability" encompasses both the transaction and system levels. A network assault should not affect the system's ability to function dependably at the system level. At the transaction level, authorised users can access transaction data without it being corrupted, inconsistent, or unavailable.

4) Prevention of Double-Spending.

One of the biggest obstacles to digital currency trade on Spending a currency more than once is known as double-spending, and it is avoided by a decentralised network. A central, reliable third party must verify whether digital money has been used twice in a centralised setting. Transactions conducted in a decentralised network environment require robust security mechanisms and preventive measures.

5) Anonymity of Users' Identity.

The significant cost of recurring user identification may arise from the challenge of securely and efficiently transferring user data between different financial institutions. Additionally, certain middlemen may disclose users' identities in a roundabout way. Furthermore, in some circumstances, One or both parties involved in the transaction can be unwilling to reveal their true identity to the other party.

B. Basic Security Properties

Blockchain's basic security properties include immutability, which ensures data cannot be altered; decentralization, which reduces single-point failures; cryptographic security, which protects data through encryption; consensus

mechanisms, which validate transactions; and transparency, which enables audibility and trust among participants.

1) Tamper-Resistance

A system, product or other physical or logical object's ability to withstand intentional alteration by users or adversaries who possess it; this is known as tamper resistance. Tamper resistance is the assurance that no transaction data stored on a blockchain may be changed before to, during, or following the block-building process [15].

2) Resistance to DDoS Attacks

A DoS attack is a sort of hack that interferes with hosted Internet services by limiting access to the host computer or network resource. DoS attacks try to prevent the delivery of valid services by bombarding the host system or network resource with unnecessary queries [25].

3) Resistance to Double-Spending Attacks

Bitcoin blockchain double-spending attacks are peculiar to digital currency transactions [26]. Given how easily digital information may be copied, the double-spending attack is a general security risk. Specifically, when exchanging digital tokens such as electronic currency, the holder has the ability to duplicate the token and distribute it to several recipients. When repeated digital token transactions (such as spending the same Bitcoin token twice) result in inconsistencies, double-spending turns into a security concern. Bitcoin uses its blockchain transaction logs and consensus system to verify each transaction to prevent double-spending.

V. LITERATURE REVIEW

The purpose of this study is to emphasize the literature review summary that is based on blockchain methods for improving data security. Additionally, a summary is provided in Table I:

Ma et al. (2022) propose a blockchain and privacy computing-based data security sharing architecture and method to guarantee the efficient protection of private data during data sharing, therefore achieving the safe exchange and distribution of data. In light of this, integrating the benefits of cutting-edge technologies like private computing and blockchain. In addition to having a profound and profound impact, the rapid growth and broad gathering of information on social governance and people's lives have motivated people from all walks of life to achieve high-quality development [27].

Rustemi, Atanasovski and Risteski (2022) review blockchain technology, its utilization, and current and future trends. They briefly discuss blockchain technology's applications, pros and cons, and cloud platforms for blockchain data storage. Description of data privacy strategies will be their focus. They'll finish the paper with the latest data storage research, its importance, and its predictions for data management and storage. Blockchain's security and decentralization make it useful in many fields, but data privacy issues like data integrity, data quality, and secure and efficient data management continue to be obstacles [28].

Li, Ma and Luo (2022) examine blockchain infrastructure performance and data capacity with secondary encryption to protect confidential data non-invasively. Modern multi-signature key aggregation and homomorphic encryption are used to provide an effective asymmetric encryption solution that protects privacy. Secondly, CA infrastructure and smart contracts enable attribute-based access control. The non-interactive zero-knowledge proof method is explicitly used to achieve secondary secrecy. Their approach outperforms others in terms of system and data capacity, according to experiments. By resolving transaction unlikability and multi-signature key distribution, this technique enhances availability and robust scalability [29].

Yassein et al. (2019) constructed by outlining the problems, the significance of the blockchain's security and privacy, and, if feasible, some potential fixes. This article assists individuals who want to learn more about blockchain technology by explaining its idea, operational procedures, "security and privacy issues and solutions," and applications. The most well-known and popular cybersecurity tactic in recent years has been blockchain technology. Numerous approaches were included in this technology, including algorithms, economic models, mathematics, and cryptography [30].

Guo (2022) presents a security and privacy strategy for federated learning enabled by blockchain that carefully considers the architecture of the data algorithm. The purpose of this work is to optimize the aforementioned method

such that it may be used ordinarily for user data protection. The general public's awareness of data privacy has grown due to the information technology age's explosive expansion and the increasing implementation of data protection rules and regulations. This has a big impact on the development of artificial intelligence that depends on data [31]. Alzuabi, Ismail and Elmedany (2022) thorough review of the research on the importance of blockchain technology and the threats to privacy and security. Data security in the medical and public health fields is already a common application for this idea, and several financial organizations, like Citibank, are investigating the banking sector's leadership through the use of blockchain technology. This study's primary focus will be blockchain technology and the IoT. This study looks at privacy and security issues [32]

Reference	Focus Area	Key Findings	Challenges/Limitati ons	Future Work
Ma et al. (2022)	Data security sharing using privacy computing and blockchain technology	suggests a data security sharing architecture to guarantee efficient personal data protection, allowing for secure data exchange and circulation.	No specific challenges were mentioned.	Further investigation can increase application in a variety of real-world contexts and investigate interaction with other privacy-preserving technologies.
Rustemi, Atanasovski , and Risteski (2022)	Blockchain technology and measures for protecting personal information	Reviews blockchain technology applications, pros, cons, and data storage trends. Emphasizes the significance of blockchain's data privacy, data management, integrity, and quality issues.	Data privacy issues, safe and effective data management, and data integrity.	Future work includes deeper evaluation of privacy strategies and exploration of predictive data management approaches
Li, Ma, and Luo (2022)	Blockchain infrastructure performance and encryption systems	Introduces a secondary encryption system using homomorphic encryption and multi-signature key aggregation, with improved privacy protection using zero-knowledge proof techniques and attribute-based access control.	Limited details on real-world applicability and scalability challenges.	Further exploration of real-world deployment, user adoption, and enhancement of scalability for extensive uses.
Yassein et al. (2019)	Blockchain privacy and security concerns	explores economic models, mathematics, cryptography, and algorithms to handle security issues while talking about the significance of privacy and security in blockchain.	Blockchain's security and privacy issues are yet unresolved.	Future studies could focus on developing comprehensive security protocols and real-world implementations to test these models.
Guo (2022)	Blockchain- powered privacy and security for federated learning	focuses on leveraging blockchain technology to optimize federated learning algorithms for safe and protecting user privacy and furthering AI development.	Ensuring the optimization of the algorithm for data protection at a large scale.	Research could focus on enhancing algorithm efficiency and compliance with emerging data privacy laws.
Alzuabi, Ismail, and Elmedany (2022)	Blockchain in medical and financial data security	focusses on blockchain integration and its usage in the Internet of Things, investigating how it may safeguard the privacy and accuracy of financial and health information.	Security and privacy concerns with blockchain-based applications in sensitive fields	Future work may investigate regulatory frameworks and enhanced trust mechanisms for blockchain in critical sectors.

VI. CONCLUSION & FUTURE WORK

Blockchain technology has been a game-changer for improving cybersecurity since it offers decentralized, transparent, and impenetrable methods for protecting data integrity and digital transactions. Its applications span multiple domains, including IoT security, cloud data protection, and secure digital identity management. Blockchain uses consensus processes and cryptographic techniques to guarantee secrecy, integrity, and availability, mitigating various cyber threats. However, despite its potential, issues include scalability, high computational overhead, and interoperability with existing infrastructures remain significant obstacles. Addressing these challenges is crucial for widespread adoption and seamless integration across industries.

Future studies should concentrate on using strategies like sharding to maximize blockchain scalability, layer-2 solutions, and hybrid blockchain architectures to enhance transaction throughput. Furthermore, for sustainable adoption, consensus methods must become more energy efficient. Examples of this include switching from PoW to PoS or using other environmentally friendly protocols. It will be easier to interchange data between various blockchain networks and traditional systems if blockchain interoperability frameworks are further investigated. Furthermore, combining blockchain with cutting-edge technologies like federated learning and AI might improve cybersecurity frameworks by facilitating adaptive security responses and real-time threat identification. Addressing these areas will ensure the continued evolution and effectiveness of blockchain in securing digital ecosystems.

REFERENCES

- [1] H. Guo and X. Yu, "A survey on blockchain technology and its security," *Blockchain Res. Appl.*, vol. 3, no. 2, p. 100067, Jun. 2022, doi: 10.1016/j.bcra.2022.100067.
- [2] B. Putz and G. Pernul, "Detecting Blockchain Security Threats," in 2020 IEEE International Conference on Blockchain (Blockchain), IEEE, Nov. 2020, pp. 313–320. doi: 10.1109/Blockchain50366.2020.00046.
- [3] G. Modalavalasa and S. Pillai, "Exploring Azure Security Center: A Review of Challenges and Opportunities in Cloud Security," *ESP J. Eng. Technol. Adv.*, vol. 2, no. 2, pp. 176–182, 2022, doi: 10.56472/25832646/JETA-V2I2P120.
- [4] Balint Penzes, "Blockchain Technology in the Construction Industry Digital Transformation for High Productivity," *Inst. Civ. Eng. Publ.*, 2018.
- [5] U. Rahardja, A. N. Hidayanto, N. Lutfiani, D. A. Febiani, and Q. Aini, "Immutability of Distributed Hash Model on Blockchain Node Storage," *Sci. J. Informatics*, 2021, doi: 10.15294/sji.v8i1.29444.
- [6] K. M. San, C. F. Choy, and W. P. Fung, "The Potentials and Impacts of Blockchain Technology in Construction Industry: A Literature Review," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 495, p. 012005, Jun. 2019, doi: 10.1088/1757-899X/495/1/012005.
- [7] A. Miglani and N. Kumar, "Blockchain management and machine learning adaptation for IoT environment in 5G and beyond networks: A systematic review," *Comput. Commun.*, vol. 178, pp. 37–63, Oct. 2021, doi: 10.1016/j.comcom.2021.07.009.
- [8] N. Mouchfiq, A. Habbani, and C. Benjbara, "Blockchain Security in MANETs," *Int. J. Comput. Inf. Eng.*, 2019.
- [9] A. P. A. Singh and N. Gameti, "Innovative Approaches to Data Relationship Management in Asset Information Systems," vol. 12, no. 6, pp. 575–582, 2022.
- [10] Y. Yu, Y. Li, J. Tian, and J. Liu, "Blockchain-Based Solutions to Security and Privacy Issues in the Internet of Things," *IEEE Wirel. Commun.*, 2018, doi: 10.1109/MWC.2017.1800116.
- [11] M. A. Khan and K. Salah, "IoT security: Review, blockchain solutions, and open challenges," *Futur. Gener. Comput. Syst.*, 2018, doi: 10.1016/j.future.2017.11.022.
- [12] L. K. Ramasamy, F. Khan K. P., A. L. Imoize, J. O. Ogbebor, S. Kadry, and S. Rho, "Blockchain-Based Wireless Sensor Networks for Malicious Node Detection: A Survey," *IEEE Access*, 2021, doi: 10.1109/ACCESS.2021.3111923.
- [13] B. Alamri, K. Crowley, and I. Richardson, "Blockchain-Based Identity Management Systems in Health IoT: A

[Godavari, 8(6), June 2023]

ISSN: 2455-9679 SJIF Impact Factor: 6.008

- Systematic Review," IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3180367.
- [14] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. M. Leung, "Decentralized Applications: The Blockchain-Empowered Software System," *IEEE Access*, 2018, doi: 10.1109/ACCESS.2018.2870644.
- [15] Suhag Pandya, "Advanced Blockchain-Based Framework for Enhancing Security, Transparency, and Integrity in Decentralised Voting System," *Int. J. Adv. Res. Sci. Commun. Technol.*, vol. 2, no. 1, pp. 865–876, Aug. 2022, doi: 10.48175/IJARSCT-12467H.
- [16] M. Gopalsamy, "A review on blockchain impact on in cybersecurity: Current applications, challenges and future trends," *IJSRA*, vol. 06, no. 02, pp. 325–335, 2022.
- [17] J. Zarrin, H. Wen Phang, L. Babu Saheer, and B. Zarrin, "Blockchain for decentralization of internet: prospects, trends, and challenges," *Cluster Comput.*, 2021, doi: 10.1007/s10586-021-03301-8.
- [18] F. A. Sunny *et al.*, "A Systematic Review of Blockchain Applications," *IEEE Access*. 2022. doi: 10.1109/ACCESS.2022.3179690.
- [19] M. S. DD Rao, AA Waoo, "Breaking Down Barriers: Scalability and Performance Issues in Blockchain-Based Identity Platforms," *Res. gate*, 2021.
- [20] V. S. Thokala, "A Comparative Study of Data Integrity and Redundancy in Distributed Databases for Web Applications," *IJRAR*, vol. 8, no. 4, pp. 383–389, 2021.
- [21] S. Murri, "Data Security Environments Challenges and Solutions in Big Data," *Int. J. Curr. Eng. Technol.*, vol. 12, no. 6, pp. 565–574, 2022.
- [22] Godavari Modalavalasa, "The Role of DevOps in Streamlining Software Delivery: Key Practices for Seamless CI/CD," *Int. J. Adv. Res. Sci. Commun. Technol.*, vol. 1, no. 12, pp. 258–267, Jan. 2021, doi: 10.48175/IJARSCT-8978C.
- [23] Suhag Pandya, "Innovative blockchain solutions for enhanced security and verifiability of academic credentials," *Int. J. Sci. Res. Arch.*, vol. 6, no. 1, pp. 347–357, Jun. 2022, doi: 10.30574/ijsra.2022.6.1.0225.
- [24] M. S. Samarth Shah, "Deep Reinforcement Learning For Scalable Task Scheduling In Serverless Computing," *Int. Res. J. Mod. Eng. Technol. Sci.*, vol. 3, no. 12, pp. 1845–1852, 2021, doi: DOI: https://www.doi.org/10.56726/IRJMETS17782.
- [25] V. Kolluri, "An Extensive Investigation into Guardians of The Digital Realm: Ai-Driven Antivirus and Cyber Threat Intelligence," *TIJER Int. Res. J.*, vol. 2, no. 1, 2015.
- [26] S. Pandya, "A Systematic Review of Blockchain Technology Use in Protecting and Maintaining Electronic Health Records," *Int. J. Res. Anal. Rev.*, vol. 8, no. 4, 2021.
- [27] B. Ma, C. Chi, J. Tian, and Y. Zhang, "Research on data security sharing mechanism and application based on blockchain and privacy computing," in 2022 4th International Academic Exchange Conference on Science and Technology Innovation, IAECST 2022, 2022. doi: 10.1109/IAECST57965.2022.10062202.
- [28] A. Rustemi, V. Atanasovski, and A. Risteski, "Overview of Blockchain Data Storage and Privacy Protection," in 2022 International Balkan Conference on Communications and Networking, BalkanCom 2022, 2022. doi: 10.1109/BalkanCom55633.2022.9900867.
- [29] X. Li, Z. Ma, and S. Luo, "Blockchain-Oriented Privacy Protection with Online and Offline Verification in Cross-Chain System," in *Proceedings 2022 International Conference on Blockchain Technology and Information Security, ICBCTIS 2022*, 2022. doi: 10.1109/ICBCTIS55569.2022.00048.
- [30] M. B. Yassein, F. Shatnawi, S. Rawashdeh, and W. Mardin, "Blockchain Technology: Characteristics, Security and Privacy; Issues and Solutions," in 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), 2019, pp. 1–8. doi: 10.1109/AICCSA47632.2019.9035216.
- [31] X. Guo, "Implementation of a Blockchain-enabled Federated Learning Model that Supports Security and Privacy Comparisons," in 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education, ICISCAE 2022, 2022. doi: 10.1109/ICISCAE55891.2022.9927649.
- [32] W. Alzuabi, Y. Ismail, and W. Elmedany, "Privacy and Security Issues in Blockchain based IoT Systems: Challenges and Opportunities," in 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2022, 2022. doi: 10.1109/3ICT56508.2022.9990679.