

INTERNATIONAL JOURNAL OF RECENT TECHNOLOGY SCIENCE & MANAGEMENT "ELECTRICAL VEHICLE BATTERY MANAGEMENT SYSTEM: A REVIEW"

Chitranjan Kumar

Senior Lecturer, Electrical Engineering, Department, Government Polytechnic, kishanganj, Bihar 855116

ABSTRACT

A Battery Management System is essential for ensuring the safe, reliable, and efficient operation of battery packs in various applications. By monitoring individual cells, balancing energy distribution, managing temperature, and implementing safety protections, BMS helps maximize the performance and lifespan of batteries while minimizing the risk of accidents or failures. The primary source of electricity in EV's are batteries. Lithium ion battery is extensively employed for energy storage in EV. BMS will monitor the parameters and determine battery state of charge, state of health and maintains the system in accurate, reliable state and also determines the life span of a battery. This paper provides a literature review on Battery Management System for safe and reliable operation of traction batteries in Electric Vehicle.

Keyword: FEM. Coolant, battery cells, lithium, aluminum.

I. INTRODUCTION

Electric vehicles (EVs) are favored Lithium-particle batteries for energy capacity on its specialized elements. The greater expense, low release rate, long life cycle, and restricted energy thickness of the presently accessible liparticle battery brings about low effectiveness to defeat these issues at their fullest limit [1]

1.1 Batteries warm administration framework

The fundamental sorts of BTMS are recorded underneath.

- 1. Air cooling
- 2. Fluid cooling
- 3. Direct refrigerant cooling
- 4. Stage change material cooling
- 5. Thermoelectric cooling
- 6. Heat pipe cooling

Air cooling

Air frameworks use air as the warm medium. The admission air could be immediate either from the climate or from the lodge and could likewise be molded air after a warmer or evaporator of a forced air system. The previous is known as a latent air framework and the last option is a functioning air framework. Dynamic frameworks can offer extra cooling or warming power. A latent framework can offer somewhere in the range of many watts cooling

http://www.ijrtsm.com@ International Journal of Recent Technology Science & Management

or warming power and dynamic framework power is restricted to 1 kW [5]. Since in the two cases the air is provided by a blower, they are additionally called constrained air framework.

Fig.1 Air cooling system

Note that the air framework offers full elements of warming, cooling, and ventilation. There is no compelling reason to assemble an extra ventilator, yet it should be noticed that the exhaust air can't be gotten back to the lodge once more. Sometimes, a hotness recuperation unit (air-air heat exchanger) is mounted after the battery pack to recuperation the hotness from the exhaust air. It can forestall the combination of exhaust air with admission air and simultaneously give additional saving potential.

Liquid cooling

It is a cooling framework where water is utilized as the coolant to cool the battery. Fluid cooling is the most usually utilized cooling framework because of its advantageous plan and great cooling execution. Dielectric fluid cooling or direct-contact fluid which can contact the battery cells straightforwardly, like mineral oil. The other is directing fluid or circuitous contact fluid which can contact the battery cells in a roundabout way, like a combination of ethylene glycol and water. Contingent upon the various fluids, various formats are planned. For direct-contact fluid, the ordinary formatis to lower modules in mineral oil. For backhanded contact fluid, a potential design can be either a coat around the battery module, discrete tubing around every module, putting the battery modules on a cooling/warming plate or joining the battery module with cooling/warming balances and plates [7]. Between these two gatherings, backhanded contact frameworks are liked to accomplish better detachment between the battery module and environmental factors and in this manner better wellbeing execution. The examinations on the fluid cooling framework have generally been focused at the improvement of the actual plan of the cooling plate and its channels and by focusing on the boundaries like; coolant pressure drop across the channels of the cooling plates and cell center temperature various plans are manufactured. As indicated by the past examination on the mathematical advancement of the cooling plate, the most elevated cooling execution was accomplished by diverted cooling and it additionally showed the base power utilization when contrasted with different techniques. Be that as it may, diverted cooling isn't great for temperature consistency because of the relatively lengthy way of stream.

Fig.1.1 Liquid cooling system

The way of the hotness move from the lower part of the battery to the cooling plate profoundly add to the warm obstruction of the battery pack structure, a few altered pack plans are formulated to upgrade the cooling execution, for example, Thickened cooling balance configuration, Sandwich cooling plate plan and the Interspersed cooling plate plan. To improve the underlying model of the useful and enormous scope battery warm administration framework for electric vehicles. A warm model for the backhanded balance cooling battery pack is created, type D-2 was proposed as an elective plan for BTMS. It worked on the proportion of identical hotness conductance to the framework volume by 64% and the all out pressure drop is expanded by 19% and the greatest temperature contrast was decreased by 5.4°C [8].

Fig.1.2 Type D-2 Proposed design

Direct Refrigerant cooling

Like dynamic fluid frameworks, an immediate refrigerant framework (DRS) comprises of an Air Conditioning circle, yet Direct Refrigerant System utilizes refrigerant straightforwardly as hotness move liquid flowing all through the battery pack.

http://www.ijrtsm.com@International Journal of Recent Technology Science & Management

Thermoelectric cooling

To work on the cooling/warming force of latent air frameworks, there are two potential redesigns. One is through thermo-electric modules. The thermoelectric cooling framework changes the electric voltage into temperature contrast as well as the other way around. In this paper, the difference in electric voltage onto temperature is talked about. It eliminates heat through the parts by debilitating power straightforwardly. Fans are prepared to further develop heat move by constrained convection. To mix a latent air framework with the thermoelectric framework and the associated framework chills off the battery temperature even not exactly the info air temperature, and the power is restricted to short of what one kW [5]. It permits with the capacity to switch among cooling and warming activities and to do that main the extremity of the cathodes is required to have been turned around.

Heat pipe cooling

It's a latent cooling framework which is essentially a fixed cylinder loaded up with refrigerant and it assimilates heat by disintegrating the refrigerant from the hot side and it eliminates heat into encompassing by gathering the refrigerant back to fluid, structure on the virus side and afterward streams back. A halfway vacuum is kept up with in the packaging of the hotness pipe and to build the hotness move pace of hotness pipes a fine construction is utilized inside the hotness pipes which expands the surface temperature. The hotness line might involve water or any refrigerant as the coolant and this cycle rehashes and once more. The battery goes about as a hotness source and sits underneath the hotness pipe (on the dissipating side) and the cooling balances goes about as the hotness sinks on the hotness pipe (on the gathering side). As per tests, a decrease of 30% in the warm obstruction is found for heat pipe cooling framework under regular convection when contrasted with without heat pipe. A warm opposition decrease of 20% under low air speed convection is conceivable. The fundamental issue with this cooling is the wellbeing of the framework which can be a worry on account of a crisis; a short out can occur because of the coolant spillage on the battery cells which can cause a disappointment of the vehicle and can be lethal. Additionally, the slim cylinders require a base distance across to keep a satisfactory strain drop and stay away from blockage.

Existing Battery

Warm Management System The most normally utilized BTMS is the fluid cooling framework which gives a minimized plan and a high cooling execution. The predominantly involved coolant in fluid cooling framework is water because of its simple accessibility and minimal expense, yet the chance of an electric short is a colossal issue in this framework. So to defeat this backhanded cooling framework is utilized by numerous prevailing electric vehicles makers. Likewise, the fluid cooling framework has generally been focused at the advancement of the actual plan of the cooling plate and its channels and furthermore by focusing on the boundaries like; coolant pressure drop and cell center temperature we can accomplish the best plan for a fluid cooling framework.

II. LITERATURE REVIEW

The restricted part technique is mathematical examination framework for finding unpleasant solutions for a wide combination of planning issues. Because of its various assortment and flexibility as an examination gadget, it is tolerating a great deal of thought in essentially every industry. In progressively planning conditions today, observe that it is essential to gain unpleasant solutions for issue rather than exact shut find course of action. It is incomprehensible tohope to find insightful mathematical solutions for some, building issues. An intelligent courses of action is a mathematical explanation that gives the assessments of the best dark sum at any region in the body, as result it is realfor ceaseless number of region in the body. For issues including complex material properties and cutoff conditions, the planner resorts to mathematical procedures that give induced, yet commendable courses of action. The restricted part procedure has turned into an indispensable resource for the mathematical courses of action of a wide extent of building issues. It has been developed meanwhile with the extending use of the fast

http://www.ijrtsm.com@International Journal of Recent Technology Science & Management

electronic automated PCs and with the creating complement on mathematical procedures for planning examination. This methodology started as a hypothesis of the helper plan to specific issues of adaptable continuum issue, started with respect to different circumstances. All theabove frameworks have been coordinated with usage of a predefined conditions and prerequisites that helps with obtain the suitable and trustworthy result.

Cao, J et al [2020] This work targets accomplishing high temperature consistency of enormous battery modules during high C-rate release with a low flowrate liquid. Another plan of deferred fluid cooling brushing stage change material (PCM) and fluid cooling is proposed for a Li-particle battery load with 40 barrel shaped cells. A heatsink is planned and improved with a mathematical model, then, at that point, a genuine cooling plate is made and its exhibition is confirmed with test. The outcomes show the low cooling temperature of fluid could build the temperature distinction of the battery pack and diminish the release limit. Hence, a high bay water temperature should be the need assuming the battery temperature is inside the cutoff. Contrasted and generally kept cooling, postponed cooling framework shows better execution particularly under high release current up to 4C with a cooling flowrate of 40 L/h. Postponed cooling fundamentally lessens the temperature contrast among batteries and inside a battery. Besides, this new cooling mode abbreviates the time of fluid cooling accordingly saving the power utilization of the battery utilized under high-rate release during climbing slopes or other high-power cases.[1]

N. Wang,. et al [2021] To address a progression of warm out of control issues brought about by temperature and the expense issue brought about by the unreasonable volume of the battery warm administration framework (BTMS), this paper presents an original air cooling BTMS which decreases the temperature and volume. In this review, we introduce the spoilers in the battery hole dispersing, which can actually further develop the hotness scattering execution of the battery. Right off the bat, this paper examines the impact of the shape, number and length of the spoilers on the most extreme temperature (MaxT) and temperature consistency of the battery module. After computational liquid elements (CFD) reproduction, this paper takes a BTMS with 16 long straight spoilers as plan 1. Contrasted and the underlying arrangement without spoilers, the MaxT of plan 1 is diminished by 3.52 K. Besides, Latin hypercube inspecting (LHS) is utilized to test and afterward lay out the hereditary programming (GP) model for the MaxT and the volume of plan 1. At long last, this paper joins CFD reenactment with the multiobjective hereditary calculation (MOGA) to drive the streamlining system. The streamlining results show that the MaxT of the battery module is 307.58 K, and the volume of BTMS is 12644460 mm3. Contrasted and plan 1, the MaxT is decreased by 2.24 K, and the volume is diminished by 4.87%. This outcome has directing importance for further developing the hotness dispersal of Z-molded air cooling BTMS and saving the expense in the business.[2]

Z. Shang, et al [2019] Liquid cooling framework is of extraordinary importance for ensuring the presentation of lithium-particle battery due to its great conductivity to keep battery working in a cool climate. In this paper, a fluid cooling framework for lithium-particle battery with changing contact surface is planned. Contact not entirely set in stone by the width of cooling plate. Numerical inference and mathematical investigation are directed to assess cooling execution and the utilization of siphon power. The outcomes show that rising bay mass stream can actually restrict the most extreme temperature, yet can't further develop temperature consistency essentially. The temperature is relative to the delta temperature, yet contrarily corresponding to the width of cooling plate. Considering the impact of temperature on warm properties, the warm properties will debilitate the impact of width of cooling plate, bay temperature and mass stream rate on temperature execution, explicitly the greatest temperature and temperature contrast, and cause temperature changes in a nonlinear way. It is challenging to work on the general execution of the battery by just upgrading a solitary variable. Three variables (mass stream rate, channel temperature, the width of cooling plate) for the warm exhibition of battery are advanced by utilizing the single element investigation and the symmetrical test. All that cooling execution can be acquired when bay temperature is 18 °C, the width of cooling plate is 70 mm and the mass stream rate is 0.21 kg/s. With the utilization of the enhancement strategy, the lower bound of temperature and the temperature consistency of battery are accomplished and the siphon utilization can be diminished. The procedure took on in this exploration can be broadly applied to battery warm administration to lessen investigation time.[3]

http://www.ijrtsm.com@International Journal of Recent Technology Science & Management

J. Chen et al [2019] The stage change material (PCM) based battery warm administration framework (BTMS) is a powerful cooling framework for guaranteeing the dependability, security, life expectancy and execution of liparticle batteries. The sorts of PCM-based BTMS incorporate the unadulterated PCM, composite PCM and crossover PCM- based BTMS. This work centers around the survey of the exploration progress in the PCM-based BTMS to propose its possibilities and difficulties. The exploration results show that most unadulterated strong fluid PCMs are of low warm conductivity, which prompts a lot of hotness amassing in a brutal working climate. The expansion of carbon materials and metals can fundamentally build the warm conductivity and the strength of the PCMs. The crossover BTMS can additionally decrease the temperature increase and upgrade the temperature consistency of the battery contrasted and a solitary BTMS. Hence, the mixture BTMS is more reasonable to high power battery packs. This study gives a heading to future exploration, including screening new PCMs, working on the productivity, decreasing the energy utilization, volume and weight of the PCM-based BTMS.[4]

Z. Shang et al [2019] Liquid cooling framework is of extraordinary importance for ensuring the presentation of lithium-particle battery due to its great conductivity to keep battery working in a cool climate. In this paper, a fluid cooling framework for lithium-particle battery with changing contact surface is planned. Contact not set in stone by the width of cooling plate. Numerical induction and mathematical investigation are directed to assess cooling executionand the utilization of siphon power. The outcomes show that rising delta mass stream can actually restrict the most extreme temperature, yet can't further develop temperature consistency altogether. The temperature is corresponding to the channel temperature, yet conversely relative to the width of cooling plate. Considering the impact of temperature on warm properties, the warm properties will debilitate the impact of width of cooling plate, channel temperature and mass stream rate on temperature execution, explicitly the greatest temperature and temperature contrast, and cause temperature changes in a nonlinear way. It is hard to work on the general execution of the battery by just enhancing a solitary element. Three variables (mass stream rate, gulf temperature, the width of cooling plate) for the warm presentation of battery are advanced by utilizing the single component investigation and the symmetrical test. All that cooling execution can be acquired when delta temperature is 18 °C, the width of cooling plate is 70 mm and the mass stream rate is 0.21 kg/s. With the utilization of the streamlining strategy, the lower bound of temperature and the temperature consistency of battery are accomplished and the siphon utilization can be diminished. The system took on in this exploration can be generally applied to battery warm administration to lessen examination time.[5]

C. Qi et al [2018] A cheat model of lithium particle battery pack was worked by coupling the electrochemical model with warm maltreatment model. The pack comprises of three completely energized batteries, every one of which has a limit of 10 Ah, utilizing Li[Ni1/3Co1/3Mn1/3]O2 as the positive cathode. The three batteries in the pack were compared, and just the center one was cheated. The impacts of current, convection coefficient and hole between batteries on the warm out of control proliferation were considered. The consequences of temperature and voltage acquired from the models were approved tentatively, and they were concurred well with the exploratory information with the relative mistake inside 6%. The outcomes showed that the beginning temperature of warm out of control of the accused battery expanded of an expansion in the current, while the temperatures for the other two diminished. The temperature pace of the charged battery changed little when the convection coefficient was more noteworthy than

40 W/m2 K. The brace of lithium particle battery pack importantly affected the warm out of control engendering. The event of warm out of control proliferation was relied upon whether there was the presence of brace when the battery hole surpassed 5 mm.[6]

Z. Li et al [2017] Accurate assessment of condition of-charge (SOC) of a battery through its life stays testing in battery research. Albeit further developed precisions keep on being accounted for now and again, practically all depend on relapse strategies experimentally, while the exactness is frequently not appropriately tended to. Here, a thorough auditis set to resolve such issues, from major rules that should characterize SOC to procedures to gauge SOC for viable use. It covers subjects from alignment, relapse (counting demonstrating techniques) to approval as far as accuracy and precision. Toward the end, we mean to address the accompanying inquiries: 1) would SOC http://www.ijrtsm.com© International Journal of Recent Technology Science & Management

assessment be able to be self-versatile without predisposition? 2) Why Ah-including is a need in practically all battery-model-helped relapse techniques? 3) How to lay out a reliable system of coupling in multi-physical science battery models? 4) To survey the exactness in SOC assessment, measurable techniques ought to be utilized to break down factors that add to the vulnerability. We trust, through this appropriate conversation of the standards, precise SOC assessment can be broadly achieved.[7]

X. Feng et al [**2016**] In this paper, a 3D warm out of control (TR) engendering model is worked for an enormous organization lithium particle battery module. The 3D TR proliferation model is assembled in light of the energy balance condition. Exact conditions are used to work on the computation of the compound energy for TR, while comparable warm safe layer is utilized to improve on the hotness move through the meager warm layer. The 3D TR proliferation model is approved by test and can give advantageous conversations on the systems of TR spread. As per the displaying investigation of the 3D model, the TR engendering can be postponed or forestalled through: 1) expanding the TR setting off temperature; 2) lessening the absolute electric energy delivered during TR; 3) improving the hotness dispersal level; 4) adding additional warm safe layer between adjoining batteries. The TR spread is effectivelyforestalled in the model and approved by explore. The model with 3D temperature conveyance gives a helpful device to specialists to concentrate on the TR proliferation components and for architects to plan a more secure battery pack.[8]

Y. Zheng, et al [2015] Battery cell limit misfortune is widely concentrated in order to broaden battery duration in fluctuated applications from versatile purchaser hardware to energy capacity gadgets. Battery packs are built particularly in energy capacity gadgets to give adequate voltage and limit. Notwithstanding, designing practice shows that battery packs generally blur more basically than cells. We examine the development of battery pack limitmisfortune by dissecting cell maturing components utilizing the "Electric amount - Capacity Scatter Diagram (ECSD)" according to a framework perspective. The outcomes show that cell limit misfortune isn't the sole supporter of pack limit misfortune. The deficiency of lithium stock variety at anodes between cells assumes a huge part in pack limit development. Subsequently, we recommend more consideration could be paid to the deficiency of lithium stock at anodes to relieve pack limit degradation.[9]

J. Zhang, et al [2014] An improved on one-layered warm numerical model with lumped boundaries was utilized to reproduce temperature profiles inside lithium-particle cells. The model utilizes heat-age boundaries laid out tentatively for the Sony (US18650) cell. The reproduction results showed great concurrence with temperature estimations at C/2, C/3, and C/6 release rates, while some deviation was seen for the C/1 release rate. The model was utilized to reproduce temperature profiles under various working circumstances and cooling rates for increased tube shaped lithium-particle cells of 10 and 100 A h limit. Results showed a solid impact of the cooling rate on cell temperature for all release rates. A critical temperature slope inside the cell was seen as just at higher cooling rates, where the Biot number is relied upon to be >0.1. At lower cooling rates, the cell acts as a lumped framework with uniform temperature. To lay out the constraints of temperature reasonable in increase by the improved on model, business lithium-particle cells at various open circuit possibilities were tried inside a sped up rate calorimeter (ARC) to decide the beginning of-warm out of control (OTR) temperatures. Sony (US18650) cells at 4.06, 3.0, and 2.8 V open circuit voltage (OCV) were tried and their deliberate OTR temperatures were viewed as 104, 109, and 144°C, individually. A sharp drop in the OCV, showing inner short out, was seen at temperatures near the liquefying point of the separator material for all open circuit voltages.[10]

III. PROBLEM FORMULATION

Electric vehicles (EVs) can encounter various electrical issues, just like any other complex electronic system. Here are some common electrical issues that EV owners might encounter:

Battery Degradation: Over time, the battery pack in an EV may degrade, leading to reduced range and performance. This degradation can be accelerated by factors such as high temperatures, frequent fast charging, and deep discharges.

http://www.ijrtsm.com@ International Journal of Recent Technology Science & Management

While some level of degradation is normal in any battery, excessive degradation may require battery replacement or refurbishment.

Charging Problems: EV owners may experience issues with charging, such as slow charging, failure to charge, or problems with the charging equipment. This could be due to faulty charging cables, connectors, or charging stations, as well as issues with the vehicle's charging port or onboard charging system.

Powertrain Issues: Problems with the electric motor, motor controller, or power electronics can lead to drivability issues, loss of power, or strange noises while driving. These issues may require diagnosis and repair by a qualified technician familiar with electric vehicle systems.

Electrical System Faults: Just like conventional vehicles, EVs have complex electrical systems that can develop faults over time. This could include issues with the vehicle's wiring, sensors, electronic control units (ECUs), or auxiliary systems such as heating, ventilation, and air conditioning (HVAC).

Software Glitches: Modern EVs rely heavily on software for various functions, including battery management, regenerative braking, and vehicle dynamics control. Software glitches or bugs could lead to unexpected behavior, error messages, or system malfunctions. In some cases, these issues can be resolved through software updates provided by the vehicle manufacturer.

Instrument Cluster or Infotainment System Problems: EVs often feature digital instrument clusters and touchscreen infotainment systems that can experience issues such as screen freezes, unresponsive touch inputs, or software crashes. These issues may require troubleshooting or software updates from the manufacturer.

HVAC System Malfunctions: Problems with the heating, ventilation, and air conditioning (HVAC) system can affect passenger comfort and overall vehicle usability. Issues could include failure to heat or cool the cabin, abnormal noises from the HVAC system, or air distribution problems.

When encountering electrical issues with an EV, it's essential to consult the vehicle's owner's manual for troubleshooting tips and contact the manufacturer or a certified service center for assistance, especially if the issue poses a safety risk or affects the vehicle's drivability. EVs are complex systems, and diagnosing and repairing electrical issues may require specialized knowledge, equipment, and training.

REFERENCES

- [1] Z. Shang, H. Qi, X. Liu, et al., Structural enhancement of lithium-particle battery for further developing warmexecution in view of a fluid cooling framework, Int. J. Heat Mass Transf. 130 (2019) 33-41.
- [2] C. Qi, Y. Zhu, F. Gao, et al., Mathematical model for warm way of behaving of lithium particle battery pack under cheat, Int. J. Heat Mass Transf. 124 (2018) 552-563.
- [3] Z. Li, J. Huang, B.Y. Liaw, et al., On condition of-charge assurance for lithium-particle batteries, J. Power Sources 348 (2017) 281-301.
- [4] Y. Zheng, M. Ouyang, L. Lu, et al. Understanding maturing systems in lithium-particle battery packs: from cell limit misfortune to pack limit advancement, J. Power Sources 278 (2015) 287-295.
- [5] X. Feng, L. Lu, M. Ouyang, et al., A 3D warm out of control proliferation model for a huge organization lithium particle battery module, Energy 115 (2016) 194-208.
- [6] J. Zhang, J. Huang, Z. Li, et al., Comparison and approval of techniques for assessing heat age pace of huge organization lithium-particle batteries, J. Therm. Butt-centric. Calorimetry 117 (2014) 447-4617.
- [7] A. Jarrett, I.Y. Kim, Influence of working circumstances on the ideal plan of electric vehicle battery cooling plates, J. Power Sources 245 (2014) 644-655.
- [8] Seungki Baek Sungjin Park* "Warm Analysis of a Battery Cooling System with Aluminum Cooling Plates http://www.ijrtsm.com© International Journal of Recent Technology Science & Management

for Hybrid Electric Vehicles and Electric Vehicles" Hongik University, Seoul 121-791, Korea (Received 31 October 2013/Revised 27 January 2014/Accepted 3 February 2014).

- [9] Cao, J., Ling, Z., Fang, X., and Zhang, Z. (2020a). Deferred Liquid Cooling Strategy with Phase Change Material to Achieve High Temperature Uniformity of Li-Ion Battery under High-Rate Discharge. J. Power Sourc. 450, 227673. doi:10.1016/j.jpowsour.2019.227673.
- [10] N. Wang, C. Li, W. Li, M. Huang, D. Qi Effect investigation on execution improvement of a clever air cooling battery warm administration framework with spoilers Appl. Therm. Eng., 192 (2021), Article 116932, 10.1016/j.applthermaleng.2021.116932.