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ABSTRACT 

In this paper, an analytical, as well as experimental approach to the crack detection in cantilever beamsby vibration analysis 

is established. An experimental setup is designed in which a cracked cantilever beam isexcited by a hammer and the response 

is obtained using an accelerometer attached to the beam. To avoidnon-linearity, it is assumed that the crack is always open. 

To identify the crack, contours of the normalizedfrequency in terms of the normalized crack depth and location are plotted. 

The intersection of contourswith the constant modal natural frequency planes is used to relate the crack location and depth.A 

minimization approach is employed for identifying the cracked element within the cantilever beam. The proposed method is 

based on measured frequencies and mode shapes of the beam. 
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I.  INTRODUCTION 

In the literature, several studies dealing with the structural safety of beams, especially, crack detection by structural health 

monitoring are entertained. Studies based on structural health monitoring for crack detection deal with change in natural 

frequencies and mode shapes of the beam. One of the most common structural defect is the presence of a crack. Cracks are 

present in structures due to various reasons. The presence of a crack could not only cause a local variation in the stiffness but 

it could also affect the mechanical behavior of the entire structure toa considerable extent. Cracks may be caused by fatigue 

under service conditions as a result of the constrained fatigue strength. Cracks may also occur due to mechanical defects. 

Another group of cracks are initiated during the manufacturing processes. Generally they are small in sizes. Such small 

cracks tend to propagate because of fluctuating stresses. If these propagating cracks remain undetected and reach their critical 

size, a sudden structural failure may occur. That is why it is possible to use natural frequency measurements to detectcracks. 

In the present investigation a number of literatures published so far have beensurveyed, reviewed and analyzed. Most of the 

researchers studied the effect of single crack onthe dynamics of structures. The objective is to carry out vibration analysis on 

a cantilever beam with and withoutcrack. The results obtained analytically are validated with the simulation results. In 

firstphase of the work two transverse surface cracks are included in developing the analyticalexpressions in dynamic 

characteristics of structures. These cracks introduce the new boundaryconditions for the structures at the crack locations. 

These new boundary conditions are derivedfrom strain energy equation using castiligiano‟s theorem. Presence of crack also 

reduces stiffness of the structures which is derived from stiffness matrix. The detailed analysis of crack modeling and 

stiffness matrices are presented in subsequent sections. Euler-Bernoulli beam theory is used for the dynamic characteristics of 
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beams with transverse cracks. Modified boundary conditions due to the presence of crack have been used tofind out the 

theoretical expressions for natural frequencies and mode shape for the beams. 

 
II. CRACK MODEL DESCRIPTION 

This section presents the approach adopted to build the theoretical model for measuring the modal characteristics i.e. natural 

frequencies and mode shapes of the cracked beam containing multiple transverse cracks for different relative crack depths 

and relative crack positions and undamaged beam structure. During the analysis of the theoretical results, it is observed that a 

noticeable change in the first three mode shapes have been marked at the vicinity of crack locations. The robustness of the 

proposed theoretical approach has been established by comparing the results with the experimental results. 

 

2.1 Evaluation of local flexibility of the damaged beam under axial and bending loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1(a) presents a multi cracked cantilever beam, subjected to axial load (P1) and bending moment (P2). The loading 

provides a coupling effect resulting in both longitudinal and transverse motion of the beam. The beam contains two 

transverse cracks of depth „a1‟ and „a2‟ having width „B‟ and height „W‟. Due to the cracks present in the beam a local 
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flexibility will be introduced and a 2x2 matrix is considered, which represents the flexibility of the beam. Fig. 2.1(b) 

represents the cross sectional view of the cantilever beam model. 

At the cracked section strain energy release rate can be explained as ; 

      

      (2.1a) 

  = E

1

(for plane stress condition)                                  (2.1b) 

The Stress intensity factors Kl1, Kl2 are of mode I (opening of the crack) for load P1 and P2 respectively. The values of stress 

intensity factors from earlier studies [46] are;  
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Assuming Utbe the strain energy due to the crack. The additional displacement along the force P i according to Castigliano‟s 

theorem is;  

         (2.4) 
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The variations of dimensionless compliances with respect to relative crack depth have been shown in Fig. 2.2 and from the 

graph it is observed that the dimensionless compliance increases with increase in relative crack depths. 

2.2 Vibration analysis of the multi cracked cantilever beam 

In the present section, a  cantilever beam (Fig. 2.3) with multiple crack with length „L‟ width „B‟ and depth „W‟, having 

cracks at distance „L1‟ and „L2‟ with crack depths „a1‟and „a2‟ respectively from the fixed end has been analyzed. The 

amplitudes of longitudinal vibration have been taken as u1(x, t), u2(x, t), u3(x, t) and amplitudes of bending vibration have 

been considered as y1(x, t), y2(x, t), y3(x, t) for the section-1(before 1
st
 crack), section-2 (in between cracks), section-3 (after 

the 2
nd

 crack) respectively as shown in Fig.3.4.   

 

 

 

 

 

 

 

The following are the expressions of normal functions for the system  

)xKsin(A)xK(cosA)x(u u2u11 
      (2.14a) 
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     (2.14b) 
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      (2.14c) 
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 (2.14d) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y12y11y10y92 
 (2.14e) 

)xKsin(A)xK(cosA)xKsinh(A)xK(coshA)x(y y18y17y16y153 
 (2.14f) 
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Fig. 2.3 Front view of the cracked cantilever beam 
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The constants Ai, (i=1, 18) are to be calculated using the laid down boundary conditions.  

The following are the boundary conditions for the cantilever beam; 

0)0(u1 
;            2.15(a)  

0)0(1 y
;            2.15(b)  

0)0(1 y
;            2.15(c)  

0)1(u3 
;          2.15(d) 

0)1("y 3 
;          2.15(e) 

0)1(y3 
          2.15(f) 

At the fractured section: 

)('u)('u 21 
;          2.16(a)  

)(y)(y 1211 
;         2.16(b)  

)(y)(y 1211 
;         2.16(c)  

)(y)(y 1211 
;         2.16(d)  

)('u)('u 2322 
;         2.16(e)  

)(y)(y 2322 
;         2.16(f)  

)(y)(y 2322 
;         2.16(g)  

)(y)(y 2322 
;         2.16(h)  

 

The expression in equation (3.17) can be found out because of the discontinuity of axial deformation to the right and left of 

the first crack location at the distance L1 from the fixed end of the cantilever beam. Also at the cracked section, we have    
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Multiplying 1211kkL

AE


 on both sides of equation (3.17) we get ;                              
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The expression in equation (2.19) can be found out because of the discontinuity of slope to the left and right of the crack at 

the crack section.     

 

)
dx

)L(dy

dx

)L(dy
(k))L(u)L(u(k

dx

)L(yd
EI 1112

221112212

11

2


  (2.19) 

Multiplying 2122
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Similarly considering the second crack we can have; 
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Where 122111 kAEM,)kL(AEM 
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By using the normal functions, equation (2.14a) to equation (2.14f) with the laid down boundary conditions as mentioned 

above, the characteristic equation of the system can be expressed as; 

0Q 
         (2.23) 

This determinant is a function of natural frequency (ω), the relative locations of the crack ( 1 , 2 ) and the local stiffness 

matrix (K) which in turn is a function of the relative crack depth (a1/W, a2/W).  

Where Q is a 18x18 matrix and is expressed as 
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III.  CRACK DETECTION 

Detection of crack in a beam is performed in two steps. First, the finite element model of the cracked cantilever beam is 

established. The beam is discretized into a number of elements, and the crack position is assumed to be in each of the 

elements. Next, for each position of the crack in each element, depth of the crack is varied. Modal analysis for each position 

and depth is then performed to find the natural frequencies of the beam. Using these results, a class of three dimensional 

surfaces is constructed for the first three modes of vibration, which indicate natural frequencies in terms of the dimensionless 

crack depth and crack position. 

3.1 Finite element Analysis 

The finite element analysis is a useful numerical technique that utilizes variation and interpolation methods for modeling and 

solving boundary value problems such as the one described in this current chapter. The finite element analysis is very 

systematic and can be useful for model with complex shape. So, the finite element model can be suitably employed for 

solving vibration based problems with different boundary conditions. Commercial finite element  

packages are available to address the practical problems. During finite element analysis, the structure is approximated in two 

ways. First step devotes to dividing the structure into a number of small parts. The small parts are known as finite elements 

and the procedure adopted to divide the structure is called as discretization. Each element on the structure has usually 

associated with equation of motion and that can be easily approximated. The each element on the finite element model has 

end points, they are known as nodes. The nodes are used to connect one element to other. Collectively the finite element and 

nodes are called as finite element mesh or finite element grid. In the second stage of approximation the equation of vibration 

for each finite element is determined and solved. The solution for each finite element brought together to generate the global 

mass and stiffness matrices describing the vibrational response of the whole structure. The displacement associated with the 

solution represents the motion of the nodes of the finite element mesh. This global mass and stiffness matrices represent the 

lumped parameter approximation of the structure and can be analyzed to obtain natural frequencies and mode shapes of 

damaged vibrating structures. 

 

3.2 Modeling and Simulation in ANSYS 

The finite element analysis is brought out for the cracked cantilever beam shown in fig 3.1 to locate the mode shape of 

transverse vibration at different crack depth and crack location. The dimensions of the cracked beams of the current research 

are as follows.  

Length of the Beam (L) = 800mm; 

Width of the beam (W) = 38 mm; 

Thickness of the Beam (H) = 6mm; 

Relative crack depth ( 1 =a1/H) = Varies from 0.25 to 0.5;  

Relative crack depth ( 2 =a2/H) = Varies from 0.25 to 0.5; 

Relative crack location ( 1 =L1/L) = Varies from 0.625 to 0.875; 

Relative crack location ( 2 =L2/L) = Varies from 0.125 to 0.9375. 

Properties for material in analysis: 
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Young‟s modulus=E=70GPa, Poisson‟s ratio= =0.35, Density=


=2.7gm/cc 

The finite element software ANSYS is used to the finite element analysis in the frequency domain and to get natural 

frequencies, and mode shapes. 

A higher order 3-D, 10-node element having 3 degrees of freedom at each node: translations in the nodal x, y, and z 

directions (Specified as SOLID187 in ANSYS) shown in fig3.1 wasselected based on concurrence study and used throughout 

the analysis. Each node has three degrees of freedom, making a total thirty degrees of freedom per element. Hexa meshed 

model, and meshing at vicinity of crack are exposed in fig 3.2, fig 3.3 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Geometry Cantilever beam with multiple cracks 

 

Fig. 3.3 SOLID187, element 
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Table1. Comparison of theoretical and numerical results 

S 

No 

Relative Crack 

Location and Position 

Relative Natural Frequency 

Theoretical Results Numerical Results 

I II III I II III 

1 
1 =0.25; 2 =0.25; 

1 =0.125; 2 =0.1875 
0.007327 0.04815 0.1345 0.007687 0.04845 0.1357 

2 
1 =0.25; 2 =0.3; 

1 =0.25; 2 =0.3125 
0.00721 0.04811 0.1339 0.007679 0.04844 0.1347 

3 
1 =0.3; 2 =0.4; 

1 =0.3125; 2 =0.375 
0.00732 0.04765 0.1336 0.007663 0.04817 0.1341 

4 
1 =0.3; 2 =0.5; 

1 =0.4375; 2 =0.5 
0.00731 0.04672 0.1348 0.007678 0.04729 0.1354 

5 
1 =0.4; 2 =0.3; 

1 =0.5625; 2 =0.625 
0.00726 0.04714 0.1336 0.007716 0.04765 0.1346 

6 
1 =0.5; 2 =0.4; 

1 =0.625; 2 =0.6875 
0.00719 0.04713 0.1341 0.007728 0.04771 0.1349 

7 
1 =0.4; 2 =0.3; 

1 =0.75; 2 =0.8125 
0.00721 0.04779 0.1321 0.007744 0.04815 0.1325 

8 
1 =0.5; 2 =0.25; 

1 =0.875; 2 =0.9375 
0.00720 0.04811 0.1345 0.007754 0.04851 0.1353 

 

Further the numerical investigation done so far must be validated with some theoretical or experimental results. In the present 

work, all the numerical results obtained with the help of ANSYS software is validated with the theoretical existing values 

taken from previous work .The theoretical analysis used for present comparison is for a beam with single crack and is 

modified for double crack for present investigation by following the equation given by the authors. To compare it, the outputs 

of the present work together with theoretical results are reflected in the form of table, to show the authentication of the 

current investigation. It is clear from the table 1 that the values obtained by numerical investigation are in good agreement 

with the already existing theoretical values for all three different modes and for different crack depth with different 
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positioning of it. The slight variations in the values are because of the various assumptions taken during numerical analyses 

which are slight different from the assumption taken during theoretical analysis by the authors.  So the present numerical 

investigation proofs to be handy for such analysis of cracked beam, and it can be said that for evaluating the relative natural 

frequency and amplitude of the multi cracked beam numerical investigation gives sufficient information regarding the matter. 

 

IV. CONCLUSION 

Following conclusions are based on above discussions supported in the form of graphical and tabular representation. 

1. The crack location and its size strongly influence the mode shapes and natural frequencies of the cracked structures. 

The noteworthy changes in mode shapes are observed near crack location. 

 

2. The positions of the cracks in relation to each other affect significantly the changes in the natural frequencies 

vibrations in the case of an equal relative depth of the cracks. When the cracks are located near to each other, the 

change in the natural frequency tends to increase. 

 

3. The natural frequency of the structure having single crack tends to merge when the crack location is shifted toward 

the free end for the cantilever. And for case having two cracks, when the distance between the cracks increases, the 

frequencies of the beam natural vibrations also tend to the natural vibration frequencies of a system with a single 

crack. 

 

4. In the case of two cracks of different depths, the larger crack has the most significant effect on the natural vibration 

frequencies. This is evident for the first natural vibration of a cantilever beam. For further more modes of vibration 

this is not so clear, because the influence of a crack location at a node is negligible. These changes in mode shapes 

and natural frequencies will be advantageous in prediction of crack location and its intensity and can further be 

extended to any multi crack system. 

 

5. Good agreement between theoretical and numerical results is observed. 
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